Ushbu veb-sayt hozirda test rejimida ishlamoqda. Ba'zi funksiyalar mavjud bo‘lmasligi yoki kutilganidek ishlamasligi mumkin.

Head of the department

History of the department

The Department of Theoretical Physics was founded in 1935. In 1935-1941, this department was run by prof. A.E. Levashov, academician of 1941-1957. S.U.Umarov, 1957-1965 years prof. GM Avakyants, 1965-1967 prof. A. Teshaboev, 1967-1972 years prof. R.H. Mallin, 1972-2005 academician. M.M. Musakhanov was the director. From 2005 to 2016, the Department of Theoretical Physics was merged with the Department of Nuclear Physics and the Department of Nuclear and Theoretical Physics was established. In 2016, the Department of Theoretical Physics was separated as a separate department, and starting from May 2017, Acad. M.M. Musakhanov is leading.

With the arrival of M.M. Musakhanov to the department, among the scientific research conducted here on the physics of semiconductors, scientific research works in new directions such as high energy physics, collision of atoms and nuclei, and the interaction of radiation with the environment began. The establishment of scientific relations with large scientific centers with great potential: United Institute of Nuclear Research (YaTBI, Russia, Dubna), Institute of Physics named after Lebedev (RFA FI, Moscow) created the basis for active research. At the initiative of M.M. Musakhanov, new special courses for theoreticians such as quantum chromodynamics, theory of elementary particles, theory of calibrated fields were introduced into the educational process. Close relations with YaTBI gave students and graduates of the department an opportunity to attend a large scientific school in Dubna. Leading theoreticians were invited to the department to give lectures. As a result, the demand for graduates of the department increased in the scientific centers of the world, the popularity of the department spread not only to Uzbekistan, but also to Georgia.
The new era of the Department of Theoretical Physics began after the independence of the Republic of Uzbekistan. The field of scientific research of the department includes elementary particle physics and quantized field theory (M.M. Musakhanov, B.A. Fayzullaev, U. Yakhshiev, A. Karimkhodzhaev), theoretical nuclear physics (B.F. Irgaziev), interaction of radiation with matter (P.E. Pyak), nonlinear includes the theory of wave processes (A.A. Abdumalikov, A.S. Rakhmatov, H.N. Ismatullaev), the theory of physics of condensed states (M.M. Musakhanov, B. Abdullaev).
In terms of personnel training, the field of theoretical physics has a special place in the faculty of physics. The creative team of the department headed by Professor A.A. Abdumalikov created a four-volume book in the Uzbek language on the theoretical physics course in 2008-2011 (B.A. Fayzullayev Theoretical Mechanics, A.A. Abdumalikov Electrodynamics, M.M. Musakhanov, A.S. Rahmatov Quantum mechanics, A.A. Abdumalikov, R. Mamatkulov Thermodynamics and statistical physics) textbook was published. In 2014, the textbooks Mathematical Physics Methods (B.A. Fayzullayev, A.S. Rahmatov) and Mathematical Methods of Theoretical Physics (B.A. Fayzullayev) for masters were published. The department is proud of its highly qualified professors and teachers.
Modern university education process cannot be imagined without ICT components. It is the efforts made to establish these components, scientific and technical solutions, the methodology of creating modern electronic educational literature and the establishment of an electronic shell, and the activities of professors and teachers and students in the electronic environment. extensive research is reflected in the pedagogical activity of the members of the department (A.Karimkhodjaev). It is no secret that the process of informatization is fundamentally different from the process of computerization, and therefore it is a process that requires a lot of money. In this regard, under the leadership of associate professor A.Karimkhodjaev, computer networks were created not only at UzMU, but also at the Student Campus and the Doctors’ Campus, using 12 grants from international donors (total: 825,000 euros and 240,000 US dollars), including TEMPUS (European Union), UNESCO grants.
The Open Educational Information Center with a total of 120 computers and equipped with modern servers was launched (A.Karimkhodjaev, A.S.Rakhmatov), ​​the UNESCO Department of Astronomy and Physics was established and is operating (M.M. Musakhanov, A.S.Rakhmatov).

The composition of the department

Scientific activity

СВОДНЫЙ КАТАЛОГ ЛОПСАЙДАЛЬНЫХ ГАЛАКТИК

СВОДНЫЙ_КАТАЛОГ_ЛОПСАЙДАЛЬНОЙ_ГАЛАКТИКИ

В составленном нами сводном каталоге приведены следующие физические параметры дисковых галактик:

  1. Название (обозначение) галактики.
  2. Галактические координаты.
  3. Морфологический тип галактики по классификации Хаббла.

4.Тип кода.

  1. Абсолютная величина.
  2. Эффективная (средняя) поверхностная яркость.
  3. Логарифм отношения длин большой и малой полуосей.
  4. Максимальная скорость вращения газа.
  5. Дисперсия скоростей звезд в балдже.
  6. Масса централъной черной дыры.
  7. Масса черной дыры в (Far -UV)-диапазоне.
  8. Масса черной дыры в (Near-UV)-диапазоне.
  9. Общая масса звезд галактики.
  10. Радиус гало.
  11. Дисперсия скорости звезды в гало.
  12. Отношение массы гало к массе звезд.
  13. Амплитуда лопсайдльности А1.
  14. Красное смещение.
  15. Расстояния до галактики.
  16. Радиус бара.
  17. Радиус внутреннего кольца.
  18. Радиус наружного кольца.
  19. Авторы.

Данные получены из разных источников, например: Морфологический тип галактики по классификации Хаббла, код морфологического типа, абсолютная величина, Эффективная средняя поверхностная яркость, Логарифм отношения длин большой и малой осей, Максимальная скорость вращения газа, дисперсия скоростей звезд в балдже, физические параметры мы взяли из базы данных HyperLeda;  Массы черной дыры взяты из статей авторов [3-7]. Масса черной дыры в (Far-UV)-диапазоне, Масса черной дыры в (Near-UV)-диапазоне, мы взяли из статей авторов [8]. Данные как общая масса звезд галактики, радиус гало и галактики, дисперсия скоростей звезды в гало, а также, отношение массы гало к массе звезды взяты из работы [2].  Красное смещение, Расстояния до галактики были получены из базы данных NED.  Радиус бара, радиус внутреннего кольца, радиус наружного кольца были получены из статей авторов [9]. Информацию о лопсайдльности амплитуде А1 мы взяли из работ [1],[10-34].

 

Литература

  1. Holwerda, B. W., “Morphological Parameters of a Spitzer Survey of Stellar Structure in Galaxies”, <i>The Astrophysical Journal</i>, vol. 781, no. 1, Art. no. 12, IOP, 2014. doi:10.1088/0004-637X/781/1/12.
  2. Díaz-García, S., Salo, H., Laurikainen, E., and Herrera-Endoqui, M., “Characterization of galactic bars from 3.6 μm S<SUP>4</SUP>G imaging”, <i>Astronomy and Astrophysics</i>, vol. 587, Art. no. A160, 2016. doi:10.1051/0004-6361/201526161.
  3. Caramete, L. I. and Biermann, P. L., “The mass function of nearby black hole candidates”, <i>Astronomy and Astrophysics</i>, vol. 521, Art. no. A55, 2010. doi:10.1051/0004-6361/200913146.
  4. Dong, X. Y. and De Robertis, M. M., “Low-Luminosity Active Galaxies and Their Central Black Holes”, <i>The Astronomical Journal</i>, vol. 131, no. 3, IOP, pp. 1236–1252, 2006. doi:10.1086/499334.
  5. Savorgnan, G. A. D. and Graham, A. W., “Overmassive black holes in the M<SUB>BH</SUB>-σ diagram do not belong to over (dry) merged galaxies”, <i>Monthly Notices of the Royal Astronomical Society</i>, vol. 446, no. 3, OUP, pp. 2330–2336, 2015. doi:10.1093/mnras/stu2259.
  6. Zaw, I., “An Accreting, Anomalously Low-mass Black Hole at the Center of Low-mass Galaxy IC 750”, <i>The Astrophysical Journal</i>, vol. 897, no. 2, Art. no. 111, IOP, 2020. doi:10.3847/1538-4357/ab9944.
  7. van den Bosch, R. C. E., “Unification of the fundamental plane and Super Massive Black Hole Masses”, <i>The Astrophysical Journal</i>, vol. 831, no. 2, Art. no. 134, IOP, 2016. doi:10.3847/0004-637X/831/2/134.
  8. Dullo, B. T., Bouquin, A. Y. K., Gil de Paz, A., Knapen, J. H., and Gorgas, J., “The Black Hole Mass-Color Relations for Early- and Late-type Galaxies: Red and Blue Sequences”, <i>The Astrophysical Journal</i>, vol. 898, no. 1, Art. no. 83, IOP, 2020. doi:10.3847/1538-4357/ab9dff.
  9. Herrera-Endoqui, M., Díaz-García, S., Laurikainen, E., and Salo, H., “Catalogue of the morphological features in the Spitzer Survey of Stellar Structure in Galaxies (S<SUP>4</SUP>G)”, <i>Astronomy and Astrophysics</i>, vol. 582, Art. no. A86, 2015. doi:10.1051/0004-6361/201526047.

10.Baldwin J.E., Lynden-Bell D., Sancisi R. Lopsided galaxies // Monthly Notices of the Royal Astronomical Society. – Oxford. 1980. – vol. 193, – pp. 313-319

  1. Levine S.E., Sparke L.S. A Model for Lopsided Galactic Disks // Astrophysical Journal. – Chicago, 1998. – vol. 496, – pp. L13-L16.
  2. Jarrett T.H., Chester T., Cutri R., Schneider S.E., Huchra J.P. The 2MASS Large Galaxy Atlas // The Astronomical Journal. – Chicago, 2003. – vol. 125, – pp. 525-554.
  3. Rix H-W., Zaritsky D. Nonaxisymmetric Structures in the Stellar Disks of Galaxies // Astrophysical Journal. – Chicago, 1995. – vol. 447, – pp. 82-102
  4. Zaritsky D. & Rix H.-W. Lopsided Spiral Galaxies and a Limit on the Galaxy Accretion Rate, // Astrophysical Journal, – Chicago, 1997, -vol. 477, -pp. 118-127
  5. Bournaud F., Combes F., Jog C.J., Puerari I. Lopsided spiral galaxies: 203 evidence for gas accretion // Astronomy and Astrophysics. – France. 2005. –vol. 438, – pp. 507-520
  6. Richter O.-G., Sancisi R. Asymmetries in disk galaxies. How often? How strong? // Astronomy and Astrophysics. – France.1994. – vol. 290, – pp. L9-L12
  7. Beale J.S., Davies R.D. Neutral Hydrogen Asymmetry in the Galaxy M101 as Evidence for Tidal Effects // Nature. – London. 1969. -vol. 221,- Issue 5180, -pp. 531-533
  8. Schoenmakers R.H.M., Franx M., de Zeeuw P.T. Measuring non-axisymmetry in spiral galaxies // Monthly Notices of the Royal Astronomical Society. – Oxford. 1997. – vol. 292, – pp. 349-364
  9. Swaters R.A., Schoenmakers R.H.M., Sancisi R., van Albada T.S. Kinematically lopsided spiral galaxies // Monthly Notices of the Royal Astronomical Society. – Oxford.1999. – vol. 304, – pp. 330-334
  10. Tremaine S. An Eccentric-Disk Model for the Nucleus of M31 // The Astronomical Journal. – Chicago, 1995. – vol. 110, – pp. 628-633
  11. Haynes M.P., Hogg D.E., Maddalena R.J., Roberts M.S. & van Zee L. Asymmetry in high-precision global H I profiles of isolated spiral galaxies , // The Astronomical Journal, – Chicago, 1998, -vol. 115, -pp. 62-79
  12. Jog C.J. Large-scale asymmetry of rotation curves in lopsided spiral galaxies // Astronomy and Astrophysics. – France, 2002. –vol. 391, – pp. 471-479
  13. Heller A.B., Brosch N., Almoznino E., van Zee L. & Salzer J. Lopsidedness in dwarf irregular galaxies, // Monthly Notices of the Royal Astronomical Society. – Oxford. 2000, -vol. 316, -pp. 569- 587
  14. Swaters R.A., van Albada T.S., van der Hulst J.M. & Sancisi R. The Westerbork HI survey of spiral and irregular galaxies. I. HI imaging of late-type dwarf galaxies, // Astronomy and Astrophysics. – France, 2002, -vol. 390, -pp. 829-861
  15. Angiras R.A., Jog C.J., Omar A., Dwarakanath K. S. Origin of disc lopsidedness in the Eridanus group of galaxies // Monthly Notices of the Royal Astronomical Society. – Oxford. 2006. – vol. 369, – pp. 1849-1857
  16. Weinberg M.D. Production of Milky Way Structure by the Magellanic Clouds // Astrophysical Journal. – Chicago, 1995. –vol. 455, – pp. L31-L34
  17. Jog C. J. Dynamics of Orbits and Local Gas Stability in a Lopsided Galaxy // Astrophysical Journal. – Chicago, 1997. – vol. 488, – pp. 642-651
  18. Saha K., Combes F., Jog, C.J. Global lopsided instability in a purely stellar galactic disc // Monthly Notices of the Royal Astronomical Society. – Oxford. 2007. –vol. 382, – pp. 419-432
  19. Statler T.S. The Shape and Orientation of NGC 3379: Implications for Nuclear Decoupling // The Astronomical Journal. – Chicago, 2001. – vol. 121, – pp. 244-253.
  20. Block D.L., Bertin G., Stockton A., Grosbol P., Moorwood A.F.M., Peletier R.F. 2.1 mum images of the evolved stellar disk and the morphological classification of spiral galaxies // Astronomy and Astrophysics. – France, 1994. – vol. 288, – pp. 365-382.
  21. Jog C.J. Maybhate A. Measurement of non-axisymmetry in centres of advanced mergers of galaxies // Monthly Notices of the Royal Astronomical Society. – Oxford. 2006. – vol. 370, – pp. 891-901.
  22. Jog C.J., Combes F. Lopsided spiral galaxies // Physics review. 2009. – vol. 471, pp. 1-75
  23. Haynes M.P., van Zee L., Hogg D.E.. Roberts M.S.. Maddalena R.J. Asymmetry in high-precision global H I profiles of isolated spiral galaxies // The Astronomical Journal. – Chicago, 1998. – vol.115, – pp. 62-79
  24. Zaritsky, D., “On the Origin of Lopsidedness in Galaxies as Determined from the Spitzer Survey of Stellar Structure in Galaxies (S<SUP>4</SUP>G)”, <i>The Astrophysical Journal</i>, vol. 772, no. 2, Art. no. 135, IOP, 2013. doi:10.1088/0004-637X/772/2/135.

International cooperation

English Content